Robust Principal Component Functional Logistic Regression
نویسندگان
چکیده
In this paper, we discuss the estimation of the parameter function for a functional logistic regression model in the presence of outliers. We consider ways that allow for the parameter estimator to be resistant to outliers, in addition to minimizing multicollinearity and reducing the high dimensionality which is inherent with functional data. To achieve this, the functional covariates and functional parameter of the model are approximated in a finite dimensional space generated by an appropriate basis. This approach reduces the functional model to a standard multiple logistic model with highly collinear covariates and potential high dimensionality issues. The proposed estimator tackles these issues and also minimizes the effect of functional outliers. Results from a simulation study and a real world example are also presented to illustrate the performance of the proposed estimator.
منابع مشابه
An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملFunctional Data Analysis Applied to Modeling of Severe Acute Mucositis and Dysphagia Resulting From Head and Neck Radiation Therapy
PURPOSE Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue-sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensiona...
متن کاملPrincipal Component Estimation of Functional Logistic Regression: Discussion of Two Different Approaches
Over the last few years many methods have been developed for analyzing functional data with different objectives. The purpose of this paper is to predict a binary response variable in terms of a functional variable whose sample information is given by a set of curves measured without error. In order to solve this problem we formulate a functional logistic regression model and propose its estima...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملFunctional Analysis of Chemometric Data
The objective of this paper is to present a review of different calibration and classification methods for functional data in the context of chemometric applications. In chemometric, it is usual to measure certain parameters in terms of a set of spectrometric curves that are observed in a finite set of points (functional data). Although the predictor variable is clearly functional, this problem...
متن کاملHigh-dimensional Classification for Brain Decoding High-dimensional Classification for Brain Decoding
Brain decoding involves the determination of a subject’s cognitive state or an associated stimulus from functional neuroimaging data measuring brain activity. In this setting the cognitive state is typically characterized by an element of a finite set, and the neuroimaging data comprise voluminous amounts of spatiotemporal data measuring some aspect of the neural signal. The associated statisti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 45 شماره
صفحات -
تاریخ انتشار 2016